Home Notebook Data Table Poster

Project Code

Goals:

Import packages and code

import pandas as pd
import numpy as np
import IPython 
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import seaborn as sns
sns.set(style="white")
sns.set(style="whitegrid", color_codes=True)
/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.
  import pandas.util.testing as tm
persons_data = pd.read_csv('https://raw.githubusercontent.com/MaxShalom/arise/master/personsx1.csv', delimiter = ',')
persons_data.head()
FPX AGE_CHG INTV_QRT SEX NOWAF FSPOUS2 COHAB1 COHAB2 FCOHAB3 ASTATFLG CSTATFLG FMX RRP FRRP ORIGIN_I HISPAN_I RACRECI3 QCADULT QCCHILD R_MARITL MRACRPI2 RACERPI2 HISCODI3 MRACBPI2 AGE_P HHREFLG RECTYPE SRVY_YR FMREFLG FMRPFLG PARENTS DAD_DEGP MOM_DEGP SIB_DEGP CDCMSTAT DAD_ED MOM_ED FMOTHER1 FFATHER1 HHX ... MAFLG CHFLG OPFLG OGFLG WHONAM1 WHONAM2 NOTCOV PRPLPLUS PWRKBR1 COVER COVER65O COVER65 REGIONBR WHYNOWKP GEOBRTH YRSINUS CITIZENP DOINGLWP WRKLYR1 WRKHRS2 PLBORN HEADST HEADSTV1 ARMFVER ARMFEV ARMFFC VACOV WRKFTALL WRKMYR HIEMPOF EDUC1 ERNYR_P ARMFTM7P ARMFTM1P ARMFTM2P ARMFTM3P ARMFTM4P ARMFTM5P ARMFTM6P ENGLANG
0 1 NaN 1 1 NaN NaN NaN NaN NaN 1 NaN 1 1 1 2 12 3 NaN NaN 4 11 4 4 7 75 P 20 2018 P B 4 NaN NaN NaN 5 NaN NaN 0 0 9 ... NaN NaN NaN NaN 1.0 NaN 2 2.0 NaN NaN 1.0 1.0 1 3.0 1 NaN 1 5 2 NaN 1 NaN NaN NaN 2 NaN NaN NaN NaN NaN 10 NaN NaN NaN NaN NaN NaN NaN NaN 1
1 1 NaN 1 1 NaN 2.0 NaN NaN NaN 1 NaN 1 1 1 2 12 1 NaN NaN 1 1 1 2 1 68 P 20 2018 P B 4 NaN NaN NaN 3 NaN NaN 0 0 20 ... NaN NaN NaN NaN 1.0 NaN 2 2.0 NaN NaN 1.0 1.0 1 3.0 1 NaN 1 5 2 NaN 1 NaN NaN NaN 2 NaN NaN NaN NaN NaN 16 NaN NaN NaN NaN NaN NaN NaN NaN 1
2 1 NaN 1 1 NaN NaN NaN NaN NaN 1 NaN 1 1 1 2 12 2 NaN NaN 4 2 2 3 2 76 P 20 2018 P B 4 NaN NaN NaN 5 NaN NaN 0 0 21 ... NaN NaN NaN NaN NaN NaN 2 NaN NaN NaN 2.0 2.0 1 3.0 1 NaN 1 5 2 NaN 1 NaN NaN NaN 2 NaN NaN NaN NaN NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN 1
3 1 NaN 1 2 NaN NaN NaN NaN NaN 1 NaN 1 1 1 2 12 1 NaN NaN 4 1 1 2 1 67 P 20 2018 P B 4 NaN NaN NaN 5 NaN NaN 0 0 22 ... NaN NaN NaN NaN 1.0 NaN 2 2.0 NaN NaN 1.0 1.0 1 9.0 1 NaN 1 5 2 NaN 1 NaN NaN NaN 2 NaN NaN NaN NaN NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN 1
4 1 NaN 1 1 NaN NaN NaN NaN NaN 1 NaN 1 1 1 2 12 1 NaN NaN 5 1 1 2 1 65 P 20 2018 P B 4 NaN NaN NaN 2 NaN NaN 0 0 24 ... NaN NaN NaN NaN NaN NaN 2 NaN NaN NaN 4.0 5.0 1 NaN 1 NaN 1 1 1 40.0 1 NaN NaN NaN 1 1.0 NaN NaN 4.0 2.0 14 2.0 NaN 2.0 2.0 1.0 1.0 NaN NaN 1

5 rows × 602 columns

Sex count

1 = Male, 2 = Female

persons_data.groupby("SEX").count()
FPX AGE_CHG INTV_QRT NOWAF FSPOUS2 COHAB1 COHAB2 FCOHAB3 ASTATFLG CSTATFLG FMX RRP FRRP ORIGIN_I HISPAN_I RACRECI3 QCADULT QCCHILD R_MARITL MRACRPI2 RACERPI2 HISCODI3 MRACBPI2 AGE_P HHREFLG RECTYPE SRVY_YR FMREFLG FMRPFLG PARENTS DAD_DEGP MOM_DEGP SIB_DEGP CDCMSTAT DAD_ED MOM_ED FMOTHER1 FFATHER1 HHX WTIA ... MAFLG CHFLG OPFLG OGFLG WHONAM1 WHONAM2 NOTCOV PRPLPLUS PWRKBR1 COVER COVER65O COVER65 REGIONBR WHYNOWKP GEOBRTH YRSINUS CITIZENP DOINGLWP WRKLYR1 WRKHRS2 PLBORN HEADST HEADSTV1 ARMFVER ARMFEV ARMFFC VACOV WRKFTALL WRKMYR HIEMPOF EDUC1 ERNYR_P ARMFTM7P ARMFTM1P ARMFTM2P ARMFTM3P ARMFTM4P ARMFTM5P ARMFTM6P ENGLANG
SEX
1 4208 0 4208 2356 2020 230 145 230 4208 0 4208 4208 4208 4208 4208 4208 2 0 4208 4208 4208 4208 4208 4208 2542 4208 4208 2578 2431 4208 279 484 55 4208 0 0 4208 4208 4208 4208 ... 6 0 0 0 1652 63 4208 1635 203 2356 1852 1852 4208 3225 4208 449 4208 4208 4208 975 4208 0 0 12 4208 1305 924 380 1143 918 4208 1143 216 1039 1234 1216 1035 698 368 4208
2 5080 0 5080 2581 1841 243 154 243 5080 0 5080 5080 5080 5080 5080 5080 6 0 5080 5080 5080 5080 5080 5080 3248 5080 5080 3286 3442 5080 152 309 76 5080 0 0 5080 5080 5080 5080 ... 14 0 4 0 2086 75 5080 2065 203 2581 2499 2499 5080 4161 5080 669 5080 5080 5080 962 5080 0 0 3 5080 99 75 452 1095 880 5080 1095 7 90 84 80 47 22 11 5080

2 rows × 601 columns

Value count of disease types

LAHCA7: Persons 18+ years who have at least one limitation due to a heart problem

Heart problem causes limitation:

1 - Mentioned
2 - Not mentioned
7 - Refused
8 - Not ascertained
9 - Don’t know

persons_data["LAHCA7"].unique()
persons_data["LAHCA7"].value_counts()
sns.countplot(x="LAHCA7",data=persons_data,palette="hls")
plt.show()
persons_data_sub=persons_data.loc[persons_data['LAHCA7'] <=2]

png

persons_data.groupby("LAHCA7").count()
FPX AGE_CHG INTV_QRT SEX NOWAF FSPOUS2 COHAB1 COHAB2 FCOHAB3 ASTATFLG CSTATFLG FMX RRP FRRP ORIGIN_I HISPAN_I RACRECI3 QCADULT QCCHILD R_MARITL MRACRPI2 RACERPI2 HISCODI3 MRACBPI2 AGE_P HHREFLG RECTYPE SRVY_YR FMREFLG FMRPFLG PARENTS DAD_DEGP MOM_DEGP SIB_DEGP CDCMSTAT DAD_ED MOM_ED FMOTHER1 FFATHER1 HHX ... MAFLG CHFLG OPFLG OGFLG WHONAM1 WHONAM2 NOTCOV PRPLPLUS PWRKBR1 COVER COVER65O COVER65 REGIONBR WHYNOWKP GEOBRTH YRSINUS CITIZENP DOINGLWP WRKLYR1 WRKHRS2 PLBORN HEADST HEADSTV1 ARMFVER ARMFEV ARMFFC VACOV WRKFTALL WRKMYR HIEMPOF EDUC1 ERNYR_P ARMFTM7P ARMFTM1P ARMFTM2P ARMFTM3P ARMFTM4P ARMFTM5P ARMFTM6P ENGLANG
LAHCA7
1 1103 0 1103 1103 414 456 46 36 46 1103 0 1103 1103 1103 1103 1103 1103 0 0 1103 1103 1103 1103 1103 1103 722 1103 1103 727 700 1103 28 50 8 1103 0 0 1103 1103 1103 ... 2 0 1 0 412 17 1103 405 33 414 689 689 1103 978 1103 121 1103 1103 1103 133 1103 0 0 1 1103 236 168 69 163 120 1103 163 40 187 230 235 208 146 77 1103
2 8062 0 8062 8062 4453 3351 415 259 415 8062 0 8062 8062 8062 8062 8062 8062 6 0 8062 8062 8062 8062 8062 8062 4998 8062 8062 5065 5101 8062 400 734 118 8062 0 0 8062 8062 8062 ... 18 0 3 0 3275 119 8062 3244 371 4453 3609 3609 8062 6323 8062 982 8062 8062 8062 1767 8062 0 0 13 8062 1149 814 746 2037 1642 8062 2037 179 927 1071 1042 862 565 297 8062
7 53 0 53 53 32 25 4 1 4 53 0 53 53 53 53 53 53 2 0 53 53 53 53 53 53 34 53 53 35 32 53 1 3 2 53 0 0 53 53 53 ... 0 0 0 0 26 1 53 26 0 32 21 21 53 37 53 2 53 53 53 15 53 0 0 0 53 8 7 5 16 15 53 16 2 6 7 8 5 4 2 53
8 17 0 17 17 12 9 1 0 1 17 0 17 17 17 17 17 17 0 0 17 17 17 17 17 17 11 17 17 11 12 17 1 3 0 17 0 0 17 17 17 ... 0 0 0 0 10 1 17 10 0 12 5 5 17 8 17 1 17 17 17 9 17 0 0 0 17 2 2 3 9 9 17 9 0 2 2 2 1 0 0 17
9 53 0 53 53 26 20 7 3 7 53 0 53 53 53 53 53 53 0 0 53 53 53 53 53 53 25 53 53 26 28 53 1 3 3 53 0 0 53 53 53 ... 0 0 0 0 15 0 53 15 2 26 27 27 53 40 53 12 53 53 53 13 53 0 0 1 53 9 8 9 13 12 53 13 2 7 8 9 6 5 3 53

5 rows × 601 columns

Data.unique

persons_data_sub.loc[persons_data_sub['LAHCA7'] == 2, 'LAHCA7'] = 0
persons_data_sub["LAHCA7"].unique()
/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py:966: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  self.obj[item] = s





array([1, 0])

Data groups (mean, describe)

persons_data_sub.groupby('LAHCA7').mean()
FPX AGE_CHG INTV_QRT SEX NOWAF FSPOUS2 COHAB1 COHAB2 FCOHAB3 ASTATFLG CSTATFLG FMX RRP FRRP ORIGIN_I HISPAN_I RACRECI3 QCADULT QCCHILD R_MARITL MRACRPI2 RACERPI2 HISCODI3 MRACBPI2 AGE_P RECTYPE SRVY_YR PARENTS DAD_DEGP MOM_DEGP SIB_DEGP CDCMSTAT DAD_ED MOM_ED FMOTHER1 FFATHER1 HHX WTIA WTFA INTV_MON ... MAFLG CHFLG OPFLG OGFLG WHONAM1 WHONAM2 NOTCOV PRPLPLUS PWRKBR1 COVER COVER65O COVER65 REGIONBR WHYNOWKP GEOBRTH YRSINUS CITIZENP DOINGLWP WRKLYR1 WRKHRS2 PLBORN HEADST HEADSTV1 ARMFVER ARMFEV ARMFFC VACOV WRKFTALL WRKMYR HIEMPOF EDUC1 ERNYR_P ARMFTM7P ARMFTM1P ARMFTM2P ARMFTM3P ARMFTM4P ARMFTM5P ARMFTM6P ENGLANG
LAHCA7
0 1.517738 NaN 2.355867 1.555073 1.997081 1.592659 1.426506 2.795367 1.674699 1.318035 NaN 1.011039 2.217068 2.044158 1.897792 11.080005 1.285413 1.0 NaN 3.700323 1.678244 1.426197 2.160010 2.153560 60.266807 20.0 2018.0 3.789878 1.200000 1.083106 1.389831 3.318903 NaN NaN 0.148102 0.080005 27584.910816 3896.152890 4232.544406 6.051848 ... 1.0 NaN 1.0 NaN 1.687939 1.369748 1.978789 2.236436 2.617251 1.980013 2.181214 2.602106 1.586331 5.675154 1.242248 4.821792 1.050112 4.173034 1.767055 34.847765 1.129744 NaN NaN 1.307692 1.865666 1.494343 1.653563 1.896783 10.732941 1.566991 15.417514 19.963181 1.77095 1.991370 1.995331 1.860845 1.566125 1.757522 1.723906 1.267924
1 1.473255 NaN 2.327289 1.480508 1.997585 1.614035 1.217391 2.777778 1.608696 1.330916 NaN 1.006346 2.078876 2.015413 1.919311 11.270172 1.317316 NaN NaN 3.475068 1.750680 1.500453 2.216682 2.204896 67.620127 20.0 2018.0 3.889393 1.214286 1.160000 1.500000 3.293744 NaN NaN 0.080689 0.040798 27113.267452 3864.845875 4071.953762 5.943790 ... 1.0 NaN 1.0 NaN 1.572816 1.352941 1.970988 2.175309 1.909091 2.099034 2.168360 2.589260 1.435177 5.378323 1.213055 4.900826 1.030825 4.556664 1.870354 34.022556 1.109701 NaN NaN 1.000000 1.786038 1.491525 1.654762 1.884058 12.914110 1.816667 14.697189 18.417178 1.52500 2.117647 2.043478 1.846809 1.581731 1.719178 1.584416 1.261106

2 rows × 598 columns

persons_data[["LAHCA7", "LAHCA8"]].describe()
LAHCA7 LAHCA8
count 9288.000000 9288.000000
mean 1.960702 2.026055
std 0.778096 0.735485
min 1.000000 1.000000
25% 2.000000 2.000000
50% 2.000000 2.000000
75% 2.000000 2.000000
max 9.000000 9.000000

Value counts

persons_data["LAHCA7"].value_counts()
persons_data["LAHCA8"].value_counts()
2    8669
1     496
7      53
9      53
8      17
Name: LAHCA8, dtype: int64

Marital status for heart diseases

Marital Status:

1 - Married - spouse in household
2 - Married - spouse not in household
3 - Married - spouse in household unknown
4 - Widowed
5 - Divorced
6 - Separated
7 - Never married
8 - Living with partner
9 - Unknown marital status

pd.crosstab(persons_data_sub.R_MARITL,persons_data_sub.LAHCA7).plot(kind='bar')
plt.title('Marital status for heart diseases')
plt.xlabel('Heart Disease')
plt.ylabel('Frequency of Marital Status')
Text(0, 0.5, 'Frequency of Marital Status')

png

Marital data by different disease groups

pd.crosstab(persons_data.LAHCA7, persons_data.R_MARITL).apply(lambda r: r/r.sum(), axis=1)
R_MARITL 1 2 4 5 6 7 8 9
LAHCA7
1 0.413418 0.009973 0.215775 0.179510 0.031732 0.106981 0.041704 0.000907
2 0.415654 0.012404 0.157901 0.150459 0.025056 0.184818 0.051476 0.002233
7 0.471698 0.018868 0.094340 0.132075 0.018868 0.150943 0.075472 0.037736
8 0.529412 0.058824 0.176471 0.000000 0.000000 0.176471 0.058824 0.000000
9 0.377358 0.018868 0.075472 0.132075 0.075472 0.188679 0.132075 0.000000

Alcohol abuse data by different disease groups

pd.crosstab(persons_data.LAHCA7, persons_data.LAHCA29_).apply(lambda r: r/r.sum(), axis=1)
LAHCA29_ 1 2 7 8 9
LAHCA7
1 0.000000 1.000000 0.0 0.0 0.0
2 0.002109 0.997891 0.0 0.0 0.0
7 0.000000 0.000000 1.0 0.0 0.0
8 0.000000 0.000000 0.0 1.0 0.0
9 0.000000 0.000000 0.0 0.0 1.0

Health insurance data by different disease groups <65

Under 65 years old

1 - Private
2 - Medicaid and other public
3 - Other coverage
4 - Uninsured
5 - Don’t know

pd.crosstab(persons_data.LAHCA7, persons_data.COVER).apply(lambda r: r/r.sum(), axis=1)
COVER 1.0 2.0 3.0 4.0 5.0
LAHCA7
1 0.301932 0.391304 0.214976 0.089372 0.002415
2 0.396811 0.338873 0.159668 0.096789 0.007860
7 0.437500 0.281250 0.156250 0.031250 0.093750
8 0.750000 0.166667 0.083333 0.000000 0.000000
9 0.076923 0.538462 0.153846 0.153846 0.076923

Health insurance data by different disease groups >65

65 years old and over

1 - Private
2 - Medicaid and other public
3 - Other coverage
4 - Uninsured
5 - Don’t know

pd.crosstab(persons_data.LAHCA7, persons_data.COVER65).apply(lambda r: r/r.sum(), axis=1)
COVER65 1.0 2.0 3.0 4.0 5.0 6.0 7.0
LAHCA7
1 0.359942 0.142235 0.185776 0.175617 0.133527 0.002903 0.000000
2 0.352452 0.126905 0.226378 0.164589 0.121917 0.005542 0.002217
7 0.523810 0.047619 0.000000 0.238095 0.095238 0.000000 0.095238
8 0.200000 0.000000 0.200000 0.400000 0.200000 0.000000 0.000000
9 0.407407 0.037037 0.148148 0.185185 0.185185 0.000000 0.037037

Private health insurance data by different disease groups

Private health insurance recode

1 - Yes, information
2 - Yes, but no information
3 - No
7 - Refused
8 - Not ascertained
9 - Don’t know

pd.crosstab(persons_data.LAHCA7, persons_data.HIKINDNA).apply(lambda r: r/r.sum(), axis=1)
HIKINDNA 1 2 7 9
LAHCA7
1 0.328196 0.670898 0.000907 0.000000
2 0.374969 0.619449 0.001364 0.004217
7 0.509434 0.377358 0.075472 0.037736
8 0.588235 0.411765 0.000000 0.000000
9 0.264151 0.679245 0.000000 0.056604

Born in the US data by different disease groups

Born in the United States

1 - Yes
2 - No
7 - Refused
8 - Not ascertained
9 - Don’t know

pd.crosstab(persons_data.LAHCA7, persons_data.PLBORN).apply(lambda r: r/r.sum(), axis=1)
PLBORN 1 2 7 9
LAHCA7
1 0.890299 0.109701 0.000000 0.00000
2 0.877078 0.121806 0.000496 0.00062
7 0.943396 0.037736 0.018868 0.00000
8 0.941176 0.058824 0.000000 0.00000
9 0.773585 0.226415 0.000000 0.00000

Education data by different disease groups

Highest education level

00-14 - High School and below
15-18 - College
19-21 - Graduate and Above

pd.crosstab(persons_data.LAHCA7, persons_data.EDUC1).apply(lambda r: r/r.sum(), axis=1)
EDUC1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 97 99
LAHCA7
1 0.004533 0.002720 0.001813 0.006346 0.007253 0.00544 0.014506 0.008160 0.033545 0.033545 0.032638 0.038078 0.028105 0.050771 0.265639 0.198549 0.073436 0.034451 0.093382 0.043518 0.009066 0.005440 0.000000 0.009066
2 0.008683 0.001116 0.002853 0.004341 0.003845 0.00707 0.012280 0.007938 0.022947 0.024312 0.030265 0.038452 0.027164 0.043165 0.269784 0.180848 0.076284 0.037212 0.121558 0.046763 0.008559 0.010419 0.003349 0.010791
7 0.018868 0.000000 0.000000 0.018868 0.000000 0.00000 0.000000 0.000000 0.000000 0.018868 0.056604 0.000000 0.018868 0.000000 0.226415 0.169811 0.094340 0.037736 0.113208 0.113208 0.000000 0.000000 0.056604 0.056604
8 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.058824 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.117647 0.176471 0.058824 0.117647 0.058824 0.411765 0.000000 0.000000 0.000000 0.000000
9 0.018868 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.018868 0.037736 0.037736 0.037736 0.037736 0.056604 0.283019 0.207547 0.056604 0.000000 0.037736 0.075472 0.037736 0.000000 0.018868 0.037736

Full-time working data by different disease groups

Usually work full time

1 - Yes
2 - No
7 - Refused
8 - Not ascertained
9 - Don’t know

pd.crosstab(persons_data.LAHCA7, persons_data.WRKFTALL).apply(lambda r: r/r.sum(), axis=1)
WRKFTALL 1.0 2.0 9.0
LAHCA7
1 0.115942 0.884058 0.000000
2 0.131367 0.864611 0.004021
7 0.000000 1.000000 0.000000
8 0.666667 0.333333 0.000000
9 0.222222 0.777778 0.000000

Statistical variables of dataset

persons_data_analysis = persons_data_sub[['ENGLANG', 'PSSRR', 'EDUC1',
                      'CITIZENP','PLBORN', 'HIKINDNA', 'LAHCA29_', 'R_MARITL', 'AGE_P', 
                      'MRACRPI2', 'SEX', 'WTFA','LAHCA7']]
percent_missing = persons_data_analysis.isnull().sum() * 100 / len(persons_data_analysis)
missing_value_persons_data = pd.DataFrame({'column_name': persons_data_analysis.columns,
                                 'percent_missing': percent_missing})
missing_value_persons_data.sort_values('percent_missing', inplace=True)
print(missing_value_persons_data)

         column_name  percent_missing
ENGLANG      ENGLANG              0.0
PSSRR          PSSRR              0.0
EDUC1          EDUC1              0.0
CITIZENP    CITIZENP              0.0
PLBORN        PLBORN              0.0
HIKINDNA    HIKINDNA              0.0
LAHCA29_    LAHCA29_              0.0
R_MARITL    R_MARITL              0.0
AGE_P          AGE_P              0.0
MRACRPI2    MRACRPI2              0.0
SEX              SEX              0.0
WTFA            WTFA              0.0
LAHCA7        LAHCA7              0.0
X = persons_data_analysis.loc[:, persons_data_analysis.columns != 'LAHCA7']
y = persons_data_analysis.loc[:, persons_data_analysis.columns == 'LAHCA7']
import statsmodels.api as sm
logit_model=sm.Logit(y,X)
result=logit_model.fit()
print(result.summary2())
Optimization terminated successfully.
         Current function value: 0.354418
         Iterations 7
                         Results: Logit
=================================================================
Model:              Logit            Pseudo R-squared: 0.036     
Dependent Variable: LAHCA7           AIC:              6520.4878 
Date:               2020-08-09 16:10 BIC:              6605.9656 
No. Observations:   9165             Log-Likelihood:   -3248.2   
Df Model:           11               LL-Null:          -3369.2   
Df Residuals:       9153             LLR p-value:      1.3268e-45
Converged:          1.0000           Scale:            1.0000    
No. Iterations:     7.0000                                       
------------------------------------------------------------------
               Coef.   Std.Err.     z     P>|z|    [0.025   0.975]
------------------------------------------------------------------
ENGLANG        0.0202    0.0474   0.4267  0.6696  -0.0727   0.1132
PSSRR         -0.0723    0.0499  -1.4491  0.1473  -0.1701   0.0255
EDUC1         -0.0090    0.0040  -2.2592  0.0239  -0.0168  -0.0012
CITIZENP      -0.0913    0.1415  -0.6456  0.5185  -0.3687   0.1860
PLBORN        -0.2753    0.1290  -2.1336  0.0329  -0.5281  -0.0224
HIKINDNA       0.0629    0.0490   1.2850  0.1988  -0.0330   0.1589
LAHCA29_      -1.3984    0.1428  -9.7949  0.0000  -1.6782  -1.1185
R_MARITL       0.0184    0.0143   1.2878  0.1978  -0.0096   0.0464
AGE_P          0.0290    0.0024  11.9857  0.0000   0.0243   0.0338
MRACRPI2       0.0306    0.0135   2.2579  0.0240   0.0040   0.0572
SEX           -0.3917    0.0658  -5.9491  0.0000  -0.5207  -0.2627
WTFA          -0.0000    0.0000  -0.8577  0.3911  -0.0001   0.0000
=================================================================

Logistic regression

from sklearn.linear_model import LogisticRegression
from sklearn import metrics
X_train, X_test, y_train, y_test = train_test_split(X, y.values.ravel(), test_size=0.1, random_state=0)
logreg = LogisticRegression(solver='lbfgs', max_iter=1000)
logreg.fit(X_train, y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=1000,
                   multi_class='auto', n_jobs=None, penalty='l2',
                   random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                   warm_start=False)
y_pred = logreg.predict(X_test)
print('Accuracy of logistic regression classifier on test set: {:.2f}'.format(logreg.score(X_test, y_test)))
Accuracy of logistic regression classifier on test set: 0.89
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
              precision    recall  f1-score   support

           0       0.89      1.00      0.94       817
           1       0.00      0.00      0.00       100

    accuracy                           0.89       917
   macro avg       0.45      0.50      0.47       917
weighted avg       0.79      0.89      0.84       917

/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py:1272: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

Calculated mean by different groups and age

LAHCA7: Persons 18+ years who have at least one limitation due to a heart problem

Heart problem causes limitation:

1 - Mentioned
2 - Not mentioned
7 - Refused
8 - Not ascertained
9 - Don’t know

persons_data.groupby('LAHCA7')['AGE_P'].mean()
LAHCA7
1    67.620127
2    60.266807
7    57.905660
8    59.705882
9    62.056604
Name: AGE_P, dtype: float64

Calculated mean by different incomes

Total earnings last year

01 - $01-$4,999
02 - $5,000-$9,999
03 - $10,000-$14,999
04 - $15,000-$19,999
05 - $20,000-$24,999
06 - $25,000-$34,999
07 - $35,000-$44,999
08 - $45,000-$54,999
09 - $55,000-$64,999
10 - $65,000-$74,999
11 - $75,000 and over
97 - Refused
98 - Not ascertained
99 - Don’t know

persons_data.groupby('LAHCA7')['ERNYR_P'].median()
LAHCA7
1     6.0
2     6.0
7    97.0
8     8.0
9     6.0
Name: ERNYR_P, dtype: float64

Calculated mean by different language levels

How well English is spoken

1 - Very well
2 - Well
3 - Not well
4 - Not at all
7 - Refused
8- Not ascertained
9 - Don’t know

persons_data.groupby('LAHCA7')['ENGLANG'].median()
LAHCA7
1    1
2    1
7    1
8    1
9    1
Name: ENGLANG, dtype: int64

Scatterplot by group and compare differences of age

fig, ax = plt.subplots(figsize=(8,6))
ax.scatter(persons_data.LAHCA7, persons_data.AGE_P, cmap='tab20b')
plt.title('Scatterplot by group and compare differences of age')
plt.show()

png

Histogram of Ages

persons_data['AGE_P'].hist(by=persons_data['LAHCA7'])
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7fc3c65850f0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7fc3d3e8ee48>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x7fc3d3ed4908>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7fc3c6220390>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x7fc3c678da90>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7fc3c617f588>]],
      dtype=object)

png

About

Project by Max Shalom
Source code and data available on the GitHub Repository

Home Notebook Data Table Poster